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Abstract

We investigate the suitability of applying some of the probabilistic and au-
tomata theoretic ideas, that have been extremely successful in the areas of
speech and natural language processing, to the area of musical style imita-
tion. By using music written in a certain style as training data, parameters
are calculated for (visible and hidden) Markov models (of mixed, higher
or first order), in order to capture the musical style of the training data in
terms of mathematical models. These models are then used to imitate two
instrument music in the trained style.
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Uittreksel

Hierdie tesis ondersoek die toepasbaarheid van probabilitiese en outomaat-
teoretiese konsepte, wat uiters suksesvol toegepas word in die gebied van
spraak en natuurlike taal-verwerking, op die gebied van musiekstyl na-
bootsing. Deur gebruik te maak van musiek wat geskryf is in ’n gegewe styl
as aanleer data, word parameters vir (sigbare en onsigbare) Markov mod-
elle (van gemengde, hoër- of eerste- orde) bereken, ten einde die musiekstyl
van die data waarvan geleer is, in terme van wiskundige modelle te beskryf.
Hierdie modelle word gebruik om musiek vir twee instrumente te genereer,
wat die musiek waaruit geleer is, naboots.
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Chapter 2
Music Theory

2.1 Introduction

This chapter discusses music theory starting with the notion of a musical
note. A single musical note is represented by four properties (Ottman, 1983):

- Pitch, how high or low the sound is;
- Duration or note value, how long the sound is held;
- Intensity and loudness of the note;
- Timbre, or the instrument the note is being played on.

Notes are grouped to form chords, which are in turn placed in an ordered
sequence to form a chord progression. The ordered sequence of durations of
notes in a melody or chords in a chord progression, is the rhythm of the com-
position. This chapter includes the discussion of chord progression, rhythm,
musical notation, intervals, scales, chords, chord inversions, cadences, note
duration, time signatures and tempo.

2.2 Pitch

When a string vibrates 261.63 times per second, it has a frequency of 261.63
Hz (Hertz) and a pitch of middle C. This frequency naming convention was

2



CHAPTER 2. MUSIC THEORY 3

only endorsed by the International Organization for Standardization in 1955
(Randel, 2003), and before 1955 there were several popular tuning stan-
dards. The standard piano has 88 keys and their frequencies are all related
to middle C by the formula freq(C)×2

s

12 , where freq(C) is the frequency of
middle C and s is an integer in the interval [−39, 48]. The absolute value of s
can also be regarded as the number of semitones, number of half steps or in-
terval size from the specific note to middle C. Each of these pitches has one
of the following names: C, C], D, D], E, F, F], G, G], A, A], B. Every 12 semi-
tones these pitch names repeat and the frequency doubles. This interval
size of 12 is referred to as an octave. Octave registers are used to distinguish
between pitch names at different frequencies. The octave registers for C are
denoted by CC, C, c, c1, c2, c3, c4, c5, where c1 is used for middle C. The
lowest note on the standard piano is AAA and has a frequency of 27.5 Hz.
This is where humans start to find it hard to distinguish between different
pitches (Levitin, 2006). Accidentals modify the pitch of a given note. Sharps
(]) are used to raise the pitch of a given note by one semitone or a half step,
and a flat ([), is used to lower the pitch by one semitone or a half step. This
means that C] and D[ are the same for all purposes, except in formal music
theory.

2.3 Duration

Rhythm is the variation of duration of a sequence of notes or a series of note
values. The duration of a note or note value indicates how long the note is

sounded. This is indicated using fractions, for example: whole (#), half ("),

quarter (!). A dot after a note increases the duration of a note by 50 percent.

Thus the note !• has a duration of three eighths, as shown in Figure 2.1.
When no pitch is sounded for a duration of time, this is called a rest, and
it is indicated by using a rest sign which corresponds to the duration, as
shown in Figure 2.2.

A measure divides a musical composition into equal time units specified in
terms of number of note values. The number of note values is specified by
the time signature, which consists of an upper and a lower number. The
number of beats per measure is represented by the upper number, while
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Figure 2.1: Note duration tree

Figure 2.2: Rest duration tree

the duration of a beat is represented by the lower number. For example, if
the upper number is two, there are two beats per measure, and if the lower
number is 8, the duration of a beat is an eighth. This implies that there will
be two eighths per measure. Popular time signatures include:

4
4 used in most forms of western classical and pop music;

2
2 used for marches and also in fast orchestral music;

2
4 used by polkas and sometimes marches;

3
4 used for waltzes, scherzi, minuets and some ballads.

The division provided by measures can be bypassed, by letting a note sound
or ring from one measure to another.
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Tempo of music is described in beats per minute (bpm) and affects the num-
ber of seconds a note is played. Suppose that the tempo is 120 bpm and the

time signature is
2
4. Then a beat is a quarter, there are 120 quarters played

each minute, and a quarter is played for half a second. This also means
that since there are two beats per measure, that the duration of a measure is
equal to a second. Furthermore, if the tempo is changed to 60 bpm, then an
eighth would be played for half a second. Musicians might play gradually
slower towards the end of a composition. This is called a ritardando, and
can be used to indicate that the composition is ending.

2.4 Timbre

The timbre of a note is composed of three properties:

- overtone profile;
- attack;
- flux.

When the pitch c1 is played on a standard piano, one of the strings inside the
piano vibrates at several frequencies. The smallest frequency is the defining
or fundamental frequency of c1, namely 261.63 Hz. The other frequencies,
known as overtones, are unique for each instrument. Often the frequencies
are multiples of the fundamental frequency; for example 523.55 Hz, 784.89
Hz, 1046.52 Hz, etc. Each overtone in the series has its own loudness value
relative to the loudness of the other frequencies. These frequency relations
are “programmed” in our brains so that restoration of the missing fundamental
happens when we hear for example a frequency series 220 Hz, 330 Hz, 440
Hz, 550 Hz, which misses the fundamental frequency 110 Hz (Levitin, 2006).
Thus although not present, our brain will add the missing frequency.

The attack is the initial frequencies when a note is played. On some music
instruments these frequencies have more complex relations than the over-
tone series. Flux is the way the sound changes once a note starts playing.
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Treble or G Clef Bass or F Clef

Figure 2.3: Clef Signs

c1 d1 e1 f 1 g1 a1 b1 c2

c d e f g a b c1

Figure 2.4: Staffs

2.5 Music Notation

Next we discuss music notation. Each pitch is represented on the music
staff, which consists of five parallel horizontal lines. Each line represents a
specific pitch as shown in Figure 2.4. Clef signs assign a specific pitch to a
given line. Figure 2.3 shows the most popular clef signs, the G and F clef.
The G clef assigns the G above middle C to the line encircled by its curl,
while the F clef assigns the F below middle C to the line between its two
dots. The time signature shown right of the clef in Figure 2.4 indicates that
there are four quarters in a measure.

2.6 Melody and Harmony

When listening to music, one hears a multitude of sounds at the same time,
and also one after the other. Melody can be described as notes heard in
succession while harmony as notes heard at the same time. We can also
describe melody and harmony as respectively the horizontal and vertical
movement of the music.

Scales are collections or subsets of pitches used to compose music. In other
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c1 d]1d1 f 1 g1 a1 b1 c2

2 1 2 2 2 2 1

]

Figure 2.5: C melodic minor (ascending) scale with indicated semitone intervals

words, for a composition, a scale is chosen and then mostly those pitches
are used for the composition. In a more complex composition the scale can
for example be changed midway through a composition. Even with these
exceptions, scales are still important when composing.

Example 2.6.1 (Basic scale examples) - The notes in the scales C major, D
major, C natural minor, C melodic minor and C pentatonic.

- C major : {C,D,E,F,G,A,B}
- D major : {D,E,F],G,A,B,C]}
- C natural minor : {C,D,D],F,G,G],A]}
- C melodic minor (ascending) : {C,D,D],F,G,A,B}
- C melodic minor (descending) : {C,D,D],F,G,G],A]}
- C pentatonic : {C,D,F,G,A}

In Example 2.6.1 the notes in sample scales are given. Scales are defined
by their starting pitch, called the root, and type. C major has a root key of
C and is of type major. The type of a scale defines the sequence of inter-
vals. A whole step is equal to two half steps or two semitones and has an
interval size of two. The major scale has the following sequence of steps:
{whole, whole, half, whole, whole, whole, half}. The melodic minor (as-
cending) scale has the following sequence of steps: {whole, half, whole,
whole, whole, whole, half} and is shown in Figure 2.5. Note that the melodic
minor has two forms (ascending and descending) depending on whether
the melody is approaching the root note from below or above respectively.
There are many other types of scales, for example the harmonic minor and
whole tone scales (Randel, 2003).

A melody is a sequence of notes played one after the other. It is not the ab-
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solute pitches that identify a melody, but the intervals between them. The
melodic contour or pitch profile takes into account only the positive or neg-
ative movement of the melody at every interval, in other words whether the
next pitch is higher of lower than the previous one. The melodic contour is
encoded by Parsons code as follows:

- “u” = up;
- “d” = down;
- “r” = repeat, when the next pitch is equal to the previous one;
- “*” = first pitch.

For example, Twinkle Twinkle Little Star represented by parsons code is:
*rururddrdrdrd (Parsons, 1975). In McNab et al. (2000) the melodic contour
is used to search a database of compositions. They found that using inter-
val sizes, and not just the contour, provided better results for the purpose
of music identification, since fewer intervals are required to identify a com-
position. The interval distance between C and F], called a tritone, or in the
middle ages the devil’s interval, was banned by the Roman Catholic church
(Levitin, 2006). When listening to a melody the volume does not impair
your ability to recognise the composition. Recognising the melody will also
not be affected by changing the root key.

A chord is a group of notes played at the same time. The simplest chord
is called a triad, which consists of three notes (see Figure 2.6 1). Whereas
melody is defined by horizontal intervals, the chord type is defined by ver-
tical intervals. The first (or lowest) note is called the root, followed by the
third and fifth interval. The third and fifth intervals are respectively the
third and fifth note in the major or minor scale relative to the first (root) note.
The fifth interval is the same for the major and minor triad and is called a
perfect fifth interval. The third interval for the major and minor triad is
called a major third and minor third interval respectively. The minor third
interval is three semitones, one less than the major third’s four semitones.
Another chord, the diminished triad is defined by a minor third and a di-
minished fifth interval. The diminished fifth interval is six semitones, one

1Note that we have dropped the case sensitivity of the minor roman numerals in the
rest of the thesis for ease of explanation.
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C Major D minor E minor F Major G Major A minor B diminished

I ii iii IV V vi vii◦

Figure 2.6: Some example triads

root position 1st inversion 2nd inversion

Figure 2.7: C major and its inversions

less than the perfect fifth’s seven semitones. Lastly, the augmented triad
is defined by the major third and augmented fifth (8 semitones) intervals.
There are many other types of chords, for example the dominant seventh,
major seventh, dominant eleventh, etc (Ottman, 1983). Contradictory to our
previous statement, that the notes of chord are played at the same time, an
arpeggio, also called a broken chord, is where the notes of chord are played
consecutively. This simplifies the definition of a chord to just a group of
notes.

In Figure 2.7, various versions of the C major triad is shown. These triads are
referred to as inversions of the C major triad, since the notes representing
the C major triad (C,E,G) can be played in any order and still form the C

major triad. This implies that a chord type has several sequences of vertical
intervals to choose from. A triad without its third is called a power chord.
Playing two power chords directly one after the other, is called a parallel
fifth, and does not conform to classical music theory rules (Randel, 2003).
A parallel motion is when two notes move by the same vertical interval.
The parallel fifth is when the vertical interval between the two notes is a
fifth. Any combination of vertical intervals can form a chord, but whether a
given chord fits in a composition is up to the style of music and the chords
between which the given chord is played.
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2.7 Chord Progressions and Cadence

A chord progression is an ordered sequence of chords. Chord progressions
are usually repeated a few times in a composition. For example, a verse of
music in the style of punk might have the chord progression: I→ V→ VI→
IV. This will usually be repeated four times. This repetition is representative
of a motif, a repeating and developing melodic or rhythmic idea, or the basic
component of the composition. Roman numerals are used to indicate the
chord number in the scale of the composition. In Figure 2.6 the triads of the
C major scale with their respective numerals are shown.

A cadence or a falling, as it is called in western music, is a certain sequence
of intervals or chords that end a phrase (verse, chorus, etc.). When a phrase
ends with the chord progression V → I or VII → I, it is referred to as an
authentic or perfect cadence. The chord progression VII → I is also rep-
resentative of resolving dissonance, or harmonic tension. Other types of
cadences include (Adams, 2000):

- half cadence: I→ V
- plagal cadence (Amen cadence): IV→ I
- deceptive cadence: V→ VI

Cadences give a definite ending, indicating to the listener that the piece of
music is concluding.

2.8 Conclusion

This chapter gave an introduction to music theory, covering the terminol-
ogy required for this thesis. For our music generation system we consider
compositions to be chords for the rhythm guitar or piano and a melody for
the lead.



Chapter 3
Automata and Markov Models

3.1 Introduction

Probabilistic finite automata and some of its subclasses are discussed in this
chapter. We assume a pre-existing knowledge of basic probability theory
and in particular Bayes’ theorem.

3.2 Markov Chains

A Markov chain models a sequence of events by using states and transition
probabilities between states. This model adheres to the first order Markov
assumption which states:

P(qt|qt−1, qt−2, . . . , q1) = P(qt|qt−1),

where q1, . . . , qt is a set of states. Thus in a Markov chain the probability of
being in state qt, at time t, depends only on the previous state, at time t-1. A
homogeneous Markov chain, which is defined in Definition 3.2.1, adheres
to the stationarity assumption, which states that the transition probabilities
of the Markov chain are time-independent. This implies that the probability
of moving to a next state, at any time, only depends on the current state.

11
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Definition 3.2.1 (Markov chains) - A Markov chain (MC) is a 3-tuple
〈 Q,a,π 〉 where:

- Q is the state space,
- a : Q × Q→ [0, 1] is a mapping defining the probability of each transi-

tion,
- and π : Q→ [0, 1] is a mapping defining the initial probability of each

state.

The following constraints must be satisfied:

- for qi ∈ Q, ∑
qj∈Q

a(qi, qj) = 1,

- ∑
q∈Q

π(q) = 1.

One approach to estimating the transition probabilities of Markov chains is
by calculating the maximum likelihood estimate, using frequency or empir-
ical counts as in the next example.

Example 3.2.1 (Calculating the parameters of a Markov chain) - Assume that
the training sequences are two melodies (c, d, e, c, d, c, d, e, c, d) and (d, e, d,
e, c, d, c, d, e, c). This implies that the state space Q is {c, d, e}. The transition
probabilities are calculated as follows:

a(qi, qj) =
#(qi → qj)

∑
qk∈Q

#(qi → qk)
,

where #(qi → qj) is the number of times state qi is followed by state qj. Thus:

a =

 a(c, c) a(c, d) a(c, e)
a(d, c) a(d, d) a(d, e)
a(e, c) a(e, d) a(e, e)

 =

 0 1 0
2
7 0 5

7
4
5

1
5 0


and

π =
(

π(c), π(d), π(e)
)

=
(

1
2 , 1

2 , 0
)
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c1
2

d1
2

1
2
7

e5
7

4
5

1
5

Figure 3.1: A first order Markov chain

We can visualise the Markov chain as a graph where vertices represent
states and edges represent transitions as in Figure 3.1.

3.3 Higher Order Markov Chains

In contrast to Markov chains as defined in Definition 3.2.1, higher order
Markov chains have a memory length larger than one. More precisely, an
Lth order Markov chain operates under the assumption:

P(qt|qt−1, qt−2, . . . , q1) = P(qt|qt−1, . . . , qt−min(t−1,L)).

When t ≤ L, qt is a startup state, and the excessive states, qt with (t < 0), are
represented by the empty string λ. In the case of Lth order Markov chains
we use a(qt−L, . . . , qt−1, qt), instead of a(qt−1, qt), to indicate transition prob-
abilities. This results in multiple transition probabilities between states qt−1

and qt, as in Figure 3.2.

The complication introduced by higher order Markov chains can be removed
by increasing the number of states and adding a history to the states, as in
Figure 3.2. In order to transform an Lth order Markov chain to a first or-
der Markov chain, we replace the state space Q by ∪L

i=1Qi, where Qi is all
state sequences of length i. More precisely, if q′t and q′t−1 are states in a
first order Markov chain, corresponding to a given higher order Markov
chain, at times t and t-1 respectively, with q′t = (qt−L+1, . . . , qt) and q′t−1 =
(qt−L, . . . , qt−1), then we have the following:

a(q′t−1, q′t) := P(q′t|q′t−1)
= P(qt−L+1, . . . , qt|qt−L, . . . , qt−1)
= P(qt|qt−L, . . . , qt−1)
= a(qt−L, . . . , qt−1, qt).
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c

a(λ,λ,c)

d

a(λ,λ,d)

a(λ,c,d)

a(d,c,d)

a(e,c,d)
a(λ,d,c)

a(c,d,c)

e

a(λ,d,e)

a(c,d,e)

a(e,d,e)

a(d,e,c)

a(d,e,d)

A second order Markov chain

λc

a(λ,λ,c)

λda(λ,λ,d)

cd
a(λ,c,d)

dc

a(λ,d,c)

de

a(λ,d,e)

a(c,d,c)

a(c,d,e)

a(d,c,d)

ec

a(d,e,c)

eda(d,e,d)

a(e,c,d)

a(e,d,e)

A first order Markov chain

Figure 3.2: A second order Markov chain and its equivalent first order Markov
chain

We are thus able to convert a higher order Markov chain to an equivalent
first order Markov chain. Next we discuss prediction suffix automata which
are equivalent to mixed (variable) order Markov chains.

3.4 Prediction Suffix Automata

Conversion from higher to first order Markov chains, as discussed in the
previous section, involves moving the memory from the transitions to the
states. Mixed order Markov chains allow transitions of various memory
lengths, whereas all transitions of higher order Markov chains have the
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same memory length. Prediction Suffix Automata (PSA) represent memory
using state labels in a similar fashion to first order Markov chains obtained
from translating higher order Markov chains to their equivalent first order
Markov chains. Both mixed and higher order Markov chains represent their
memory using transitions, whereas prediction suffix automata (PSA) uses
state labels. This flexibility of memory lengths in a PSA allows us to avoid
the exponential growth associated with higher order Markov chains.

Next we define prediction suffix automata, which are equivalent to mixed
order Markov chains.

Definition 3.4.1 (Prediction suffix automata (Ron et al., 1996; Schwardt, 2007))
- A prediction suffix automata (PSA) is a 4-tuple 〈 Σ, Q, τ, p 〉 where:

- Σ is a finite input alphabet,
- Q ⊂ Σ∗ is a finite set of finite-length strings (so that λ ∈ Q) which is the

state space,
- τ : Q ×Σ→ Q, is the state transition function,
- p : Q ×Σ→ [0, 1], is the next symbol probability distribution.

The following constraints must be satisfied:

- ∑
σ∈Σ

p(q, σ) = 1 for all q ∈ Q;

- the start state q0 is the empty string λ;
- for all q ∈ Q and σ ∈ Σ, τ(q, σ) is equal to the longest suffix of qσ that

is in Q.

If in a PSA 〈 Σ, Q, τ, p 〉 the state space of the PSA contains all states of
length L, i.e. if ΣL ⊆ Q, we refer to the PSA as an L-PSA. Note that an
L-PSA is equivalent to an Lth order Markov chain. Both models limit the
maximum memory length to L.

Training an L-PSA from training sets is achieved by first training an L-PST
(see next section for the definition of a PST) and then converting the L-PST
to an equivalent L-PSA. A PSA’s transition function specifies the next state,
given the previous state and alphabet symbol, whereas a PST needs to cal-
culate the next state. This is done by appending the alphabet symbol to the
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right of the current state string and then searching for the longest suffix that
is also a state in the PST. This calculation in a PST can take L times longer
than when a PSA’s transition function is used. The PSA also has extra added
prefix states, which connects previously unreachable states to the structure.

In the next section we discuss PSTs, including training and converting a PST
to a PSA.

3.5 Prediction Suffix Trees

Definition 3.5.1 (prediction suffix trees (Ron et al., 1996; Schwardt, 2007)) -
A prediction suffix tree (PST) is a 3-tuple 〈 Σ, Q, p 〉 where:

- Σ is a finite alphabet;
- Q is the finite state space and Q ⊂ Σ∗ is a finite set of finite-length

strings with λ ∈ Q;
- p : Q ×Σ→ [0, 1], is the next symbol probability distribution.

The following constraints must be satisfied:

- ∑
σ∈Σ

p(q, σ) = 1 for all q ∈ Q;

- for all q ∈ (Q− λ) there exists s ∈ Σ and q′ ∈ Q such that q = sq’, and
q’ is the parent of q;

- the root of the tree is labelled by λ.

Ziv and Lempel (1978) developed a variable order algorithm for lossless
data compression. LearnPSA is an equivalent lossy compression algorithm.
The LearnPSA algorithm (Ron et al., 1996) is used to calculate the state space
and probability distributions of a PST. This algorithm finds all the strings
with a statistical significance, given certain input parameters for the train-
ing sequences. The algorithm’s design was motivated by the Probably Ap-
proximately Correct (PAC) learning model (Valiant, 1984). Starting at the
root node, which is represented by the empty string, the algorithm follows
a top-down approach to build a tree to which nodes are added, which ap-
pear a significant number of times in the training data and which have a
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unique next symbol distribution when compared to shorter suffixes of the
same node. The parameters for LearnPSA are listed below:

- Σ is the input alphabet;
- L is the maximum string length allowed to label a state;
- n is the maximum number of states allowed;
- δ ∈ (0, 1) is the approximation parameter;
- and ω1, . . . , ωT are the training sequences.

The threshold values are calculated as follows:

- γ = δ
48L|Σ| , is the smoothing factor;

- Pmin = δ
2nLlog(1/γ) −

|Σ|
8n , is the minimum empirical string probability;

- α = (1 + γ|Σ|)× γ , is the minimum empirical next symbol probabil-
ity;

- β = 1 + 3γ|Σ| , is the minimum empirical next symbol probability
ratio.

Next we define the following functions:

- ηi(q, s) = the number of times the string q.s appears in the training
sequence, ωi ;

- ηi(q, ∗) = ∑
s∈Σ

ηi(q, s) ;

- p(q) = ∑T
i=1 ηi(q,∗)

(∑T
i=1 |ωi|)−T

;

- p(q, s) = ∑T
i=1 ηi(q,s)

∑T
i=1 ηi(q,∗) ,

where p(q, s) represents the frequency probabilities. These functions are
calculated for every q ∈ Σ≤L = ∪L

i=0Σi and s ∈ Σ. We need to subtract T
from the sum of the length of all training sequences in the denominator of

∑T
i=1 ηi(q,∗)

(∑T
i=1 |ωi|)−T

, since the last symbol in each training sequence does not have a
next symbol. Also, we define parent(q) to be the longest proper suffix of q.

The pseudocode for LearnPSA is given on the next page:
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LearnPSA(Σ,L,n,δ,ω)

01 Q = {λ}

Initialise the state space to include the root state λ.

02 F = {s | s ∈ Σ and P(s) ≥ Pmin}

Initialise the frontier set of states to be considered to include every alphabet
symbol with a high enough occurrence rate in the training sequence.

03 while F 6= ∅
04 q = F.pop()

While there are states to be considered, remove the currently considered
state from the frontier.

05 f or all s ∈ Σ

06 i f p(q, s) ≥ α and p(q,s)
p(parent(q),s) ≥ β

07 Q = Q ∪ q

If the empirical next symbol probability is significant enough, according to
α, and if the state q provides significantly more statistical information about
the next symbol than its parent does, q is added to the state space.

08 F = F ∪ (Suffixes(q)−Q)
09 end i f

All suffixes of q which are not in the state space or the frontier are now also
considered as potential states.

10 end f or
11 i f |q| < L : F = F ∪ {s · q | s ∈ Σ and P(s · q) ≥ Pmin}

Consider all children of q with a high enough frequency count.

12 end while
13 p(q, s) = p(q, s)× (1− |Σ| × γ) + γ

Set the next symbol probability for every state and symbol respectively,
while taking a smoothing factor into account.
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Figure 3.3: A prediction suffix tree

Completing the suffix tree is done by adding all missing parents of the state
space. These parents inherit their next symbol probabilities from their re-
spective parents.

Example 3.5.1 - In Figure 3.3 the resulting PST is shown when the input
parameters are:

- Σ = {c, d, e}
- L = 3
- n = 10
- δ = 0.1
- ω1 = (c, d, e, c, d, c, d, e, c, d)
- ω2 = (d, e, d, e, c, d, c, d, e, c)

The suffix ec was not added to the tree, since it has the same probability
distribution as its parent c. This is the case since c is always followed by d

independent of whether its predecessor is e or d. The node de is only added
after the completion of the LearnPSA algorithm, in order to complete the
constructed tree. Note that internal nodes could have the same next symbol
distribution as their parent, in the case where they are used to complete the
tree, but this is not true for leaf nodes.
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Figure 3.4: A prediction suffix automata corresponding to the PST in Figure 3.3

Converting a PST to a PSA is achieved by adding all missing prefixes to the
state space and by constructing the transition function τ. Each state needs
all its prefixes to allow the state to be reachable in the PSA. These prefixes
inherit their transition probabilities from their longest proper suffix in the
state space. Constructing τ involves finding the destination state for each
source state and transition symbol. The destination state of a transition is
the longest suffix of the string obtained by concatenating the source state
and the transition symbol, which is also in the state space. The resulting
PSA converted from the PST in Figure 3.3 can be seen in Figure 3.4. Nodes
dc and ec are the prefixes added to complete the automaton.

PSAs are in general more compact than higher order Markov chains, since
higher order Markov chains require all states of maximum length, where in
contrast PSAs only require statistically significant states.

3.6 Hidden Markov Models

Hidden Markov models (HMMs) (Rabiner, 1990) are used to model the re-
lationship between a hidden and an observed sequence. A discrete hidden
Markov model is a Markov chain with a discrete probability distribution at
each state. These discrete probability distributions define probabilities of
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emitting a specific alphabet symbol in a given hidden state. Thus the states
of the Markov chain are the hidden states.

Definition 3.6.1 (Discrete hidden Markov models (Dupont et al., 2005)) - A
discrete HMM is a 5-tuple 〈Σ, Q, a, b, π 〉 where:

- Σ is a finite alphabet of visible symbols;
- Q is a finite set of hidden states;
- a : Q × Q→ [0, 1] is a mapping defining the probability of transitions

between hidden states;
- b : Q×Σ→ [0, 1] is a mapping defining the emission probability of each

visible symbol at a given hidden state, also called a confusion matrix;
- and π : Q → [0, 1] is a mapping that defines the initial probability of

the hidden states.

The following constraints must be satisfied:

- for all qi ∈ Q, ∑
qj∈Q

a(qi, qj) = 1;

- for all q ∈ Q, ∑
ς∈Σ

b(q, ς) = 1;

- ∑
q∈Q

π(q) = 1.

We denote the observation and hidden state sequence by χ = χ1, . . . , χn and
s = s1, . . . , sn, respectively, where χi ∈ Σ and si ∈ Q. We use the following
notation:

π(qi) = P(s1 = qi);

a(qi, qj) = P(st = qj|st−1 = qi);

b(qj, χt) = P(χt|st = qj).

In the notation above, P(x) is the probability of an event, while P(x | y) is
the probability of an event x given that event y has occurred.

In Example 3.6.1 the observation sequence represents the chord progression
and the hidden sequence represents the melody of a given composition.
This models the relation between two instruments, one playing chords and
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the other a chordless melody. In the case where the hidden state sequence
and observation sequence are available as training data, empirical counts
can be used to calculate the parameters of the model, as for example when
using music. When this is not the case, the Baum-Welch forward-backward
algorithm is used.

Example 3.6.1 (Training an HMM using empirical counts) - The training in-
put is as follows:

χ1 I I I II II II I I II II
s1 c d e c d c d e c d
χ2 I I I I II II II II I I
s2 d e d e c d c d e c

,

where χ is the observation sequence and s is the hidden state sequence.
This implies that Σ = {I, II} and Q = {c, d, e}. The hidden state sequence
can be used as in Example 3.2.1 to determine the transition probabilities of
the underlying Markov chain,

a =

 0 1 0
2
7 0 5

7
4
5

1
5 0

 and π =
(

1
2 , 1

2 , 0
)

.

The confusion matrix, b, is also trained using counts as follows:

for all q ∈ Q and σ ∈ Σ, we have that b(q, σ) =
#(st = q and χt = σ)

#(st = q)
.

Thus:

b =

 b(c, I) b(c, I I)
b(d, I) b(d, I I)
b(e, I) b(e, I I)

 =


2
7

5
7

1
2

1
2

1 0

 .

A graphical representation of the HMM is shown in Figure 3.5, with the
discrete probabilistic distribution at each state displayed as a histogram.
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Figure 3.5: A discrete hidden Markov model with histograms defining the emission
probabilities

3.7 Hidden Markov Model Algorithms

Next we discuss algorithms applicable to hidden Markov models. The for-
ward algorithm is used to calculate the probability of a given observation
sequence. This algorithm is used when multiple models are available, and
the model which matches the observation sequence the best needs to be
selected. The solution is a dynamic programming algorithm and involves
filling in the forward matrix, α(t, qi) = P(st = qi, χt

1), where χt
1 represents

the observation sequence χ1, . . . , χt. Each cell of the forward matrix is equal
to the sum of the probabilities of all paths which lead to state qi and which
emits the specified observation sequence from time 1 to time t (see Figure
3.6). The forward matrix is calculated as follows:

α(t, qi) =


π(qi)× b(qi, χt) if t = 1;(

∑
qj∈Q

α(t− 1, qj)× a(qj, qi)
)
× b(qi, χt) otherwise.

Thus for a given model, the probability of a specific observation sequence
χT

1 is equal to ∑q∈Q α(T, q). The asymptotic running time of the forward
algorithm is O(|Q|2T).

Viterbi decoding is used to find the state sequence with the maximum likeli-
hood, given an observation sequence. The dynamic programming solution
used for Viterbi decoding is similar to the forward algorithm, but instead of
calculating the sum of all paths leading to a hidden state, the most probable
path probability leading to a hidden state is determined. The probability
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π(c)× b(c, I)

π(d)× b(d, I)

π(e)× b(e, I)

a(c,c)

a(d,c)

a(e,c)

(
Σq∈Qa(q, c)× α(1, q)

)
× b(c, I I)

χ1 χ2

c

d

e

=I =I I

Figure 3.6: The forward algorithm

An application of the forward algorithm with observation sequence χ =
(I,II) and state space Q = {a,b,c}.

represented by each cell of the matrix δ is defined as follows:

δ(t, qi) = P(st = qi, st−1 = s∗t−1, . . . , s1 = s∗1 , χt
1),

where s∗ is the state sequence with the maximum probability, given the ob-
servation sequence. These probabilities are calculated recursively as fol-
lows:

δ(t, qi) =

{
π(qi)× b(qi, χt) if t = 1;
maxqj∈Q(δ(t− 1, qj)× a(qj, qi))× b(qi, χt) otherwise.

While calculating δ, we construct φ, which is used to store the state at time
(t - 1) in the most probable path to state qi at time t. We calculate φ, for t > 1,
as follows:

φ(t) = argmaxqj∈Q(δ(t− 1, qj)× a(qj, qi)).

After calculating δ and φ we use backtracking to find the most probable path
ι for a given observation sequence, as shown below:

ι(t) =

{
argmaxqj∈Qδ(t, qj) if t = T;

φ(t + 1, ι(t + 1)) otherwise.

The asymptotic running time of Viterbi decoding is O(|Q|2T), which is the
same as the running time for the forward algorithm.

Note that Viterbi decoding only finds the most probable hidden state se-
quence and not a probability distribution over possible hidden state se-
quences, from which possible sequences of hidden states can be selected
by taking the probability distribution into account. The A* search algorithm
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(Hart et al., 1968) is an alternative dynamic algorithm which finds the k most
probable sequences.

The backward algorithm calculates the probability of emitting a partial ob-
servation sequence χT

t+1 = χt+1, . . . , χT, given that the HMM is in the hid-
den state qi at time t, and defines β as follows:

β(t, qi) = P(χT
t+1|st = qi).

The backward matrix can be calculated by using a dynamic programming
algorithm as shown below:

β(t, qi) =


1 if t = T;

∑
qj∈Q

(a(qi, qj)× b(qj, χt+1)× β(t + 1, qj)) otherwise.

Using the transition, confusion, forward and backward matrices we can cal-
culate γ, which is the probability of transitioning from state qi to qj at time
t, given the full observations sequence χT

1 = χ1, . . . , χT (Huang et al., 2001),
as shown below for (t > 1):

γ(t, qi, qj) = P(st−1 = qi, st = qj|χT
1 )

=
α(t− 1, qi)× a(qi, qj)× b(qj, χt)× β(t, qj)

∑
qk∈Q

α(T, qk)
.

The initial probabilities, at time t = 1, is given by:

γ(t, qj) =
π(qj)× b(qj, χ1)× β(t, qj)

∑
qk∈Q

α(T, qk)
.

By using γ, we can calculate the probability ω of transitioning to the next
hidden state qj at time t, given the current hidden state qi at time (t - 1) and
the full observation sequence χT

1 = χ1, . . . , χT, as follows:

ω(t, qi, qj) = P(st = qj|st−1 = qi, χT
1 )

=
γ(t, qi, qj)

∑
qj∈Q

γ(t, qi, qj)
.
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The Markov chain determined by ω(t, ∗, ∗) can be used to generate multiple
possible hidden state sequences, given the observation sequence and the
model. This is used in our music generation system to compose a melody
given the chords.

3.8 Mixed Order Hidden Markov Models

First order HMMs consist of a first order Markov chain with a probability
distribution associated with each state of the Markov chain. More generally,
a mixed order hidden Markov model is a mixed order Markov chain with
a probability distribution associated with each state of the Markov chain.
Instead of using a mixed order Markov chain, as the base of the mixed order
hidden Markov model, we use a Prediction Suffix Automata (PSA), since
PSAs are equivalent to mixed order Markov chains. Each state of the PSA
used in a given mixed order hidden Markov model, is associated with a
probability distribution defining its emission probabilities. This probability
distribution is the same for all states in the PSA which have the same last
symbol in their respective state labels. Note that the mixed order nature of
a PSA is kept in the state labels, instead of the transitions as is the case for
mixed order Markov chains. This property makes the PSA’s transitions first
order and allows the algorithms discussed in Section 3.7, to be applied to a
our mixed order hidden Markov model. Figure 3.7 shows the PSA in Figure
3.4 with associated probability distributions. The distributions fc, fd and fe

are represented by the rows of the confusion matrix.

3.9 Probabilistic Finite Automata

Finally, we discuss Probabilistic Finite Automata (PFA), since all other au-
tomata discussed in the previous part of this chapter are PFAs. The class of
deterministic probabilistic finite automata (DPFA) is a subclass of the class
of PFA, with the property that the transition from a state, given an input
symbol, is unique (see Definition 3.9.1).

Note that all prediction suffix automata (PSA) are deterministic. The set of
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Figure 3.7: A mixed order Markov model

states of a PSA is contained in Σ∗, which is not necessarily the case for (de-
terministic or non-deterministic) PFAs. This implies that the probability dis-
tributions determined by PSAs, prediction suffix trees (PSTs) and Markov
chains, are a subset of the probability distributions determined by DPFAs,
which is in turn is a subset of the probability distributions determined by
PFAs and hidden Markov models (HMMs) (Schwardt, 2007).

Next we give the formal definition of a PFA.

Definition 3.9.1 (Probabilistic finite automata (Thollard et al., 2005)) - A prob-
abilistic finite automaton (PFA) is a 5-tuple 〈 Q,Σ,τ,π,p 〉 where:

- Σ is a finite input alphabet;
- Q is the state space;
- τ ⊆ Q× Σ×Q is a set of transitions;
- π : Q→ [0, 1] defines initial-state probabilities;
- p : τ → [0, 1] defines transition probabilities.

The following constraints must be satisfied:

- ∑
q∈Q

π(q) = 1;

- for qi ∈ Q, ∑
s∈Σ,qj∈Q

p(qi, s, qj) = 1.
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Figure 3.8: A probabilistic finite automaton

Note that a hidden Markov model can be converted to a PFA which de-
termines the same probability distribution. When converting an HMM to
a PFA, we use an identical set for Σ and the state space becomes Q′ =
Q ∪ {qstart}. We obtain the transition probability function of the PFA by
calculating it over qi ∈ Q′, s ∈ Σ and qj ∈ Q as shown below:

p(qi, s, qj) =

{
π(qj)× b(qj, s) if qi = qstart;
a(qi, qj)× b(qj, s) otherwise.

We define the initial probabilities of the equivalent PFA as π(qstart) = 1,
and all other states have intial probability zero. Figure 3.8 shows a PFA
equivalent to the HMM in Figure 3.5.

3.10 Final States

Final or acceptance states in an automaton require the automaton to be in
one of these states after the processing of a string, in order to accept the
given string. The automata described in the previous sections did not in-
clude a final state, since they only modelled strings of a fixed length. This
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implies that their distributions were normalised over strings with the same
length. For example, all the probabilities of the strings generated from the
Markov chain in Figure 3.1, of length two, sums to one, as shown below:

P(cd) = 1
2 × 1

P(dc) = 1
2 ×

2
7

P(de) = 1
2 ×

5
7

1.0

The introduction of a final state normalises the probability distribution of
generated strings over all lengths. This is necessary when generating strings
of various lengths. The definition of a probabilistic finite automata with a
final state is given below.

Definition 3.10.1 (Probabilistic finite automata with final state probabili-
ties (Thollard et al., 2005)) - A probabilistic finite automaton with final state
probabilities (FPFA) is a 6-tuple 〈 Q,Σ,τ,π,p,f 〉 where:

- Σ is a finite input alphabet;
- Q is the state space;
- τ ⊆ Q× Σ×Q is a set of transitions;
- π : Q→ [0, 1] defines initial-state probabilities;
- p : τ → [0, 1] defines transition probabilities;
- f : Q→ [0, 1] defines the final-state probabilities.

The following constraints must be satisfied:

- ∑
q∈Q

π(q) = 1

- for qi ∈ Q we have that f (qi) + ∑
s∈Σ,qj∈Q

p(qi, s, qj) = 1

The behaviour of a single acceptance state can be simulated without adjust-
ing the definitions and algorithms described in the previous sections. This
is done by appending all training sequences with a final state and emission.
This implies an implicit extension of the respective state space and alphabet.
In Figure 3.9 an FPFA equivalent to the HMM Figure 3.5 is shown.
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Figure 3.9: A probabilistic finite automaton with a final state

3.11 Conclusion

This chapter provided the required background on probabilistic automata
and hidden Markov models. Our music generation/imitation system al-
lows the user to use first, higher and mixed order Markov models. Our first
approach to music generation uses first order Markov chains. Later we dis-
cuss how to use hidden Markov models to model the relationship between
the melody and harmony of a composition.
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Appendix A
Tree Languages

A.1 Trees

A Tree is defined to be a connected acyclic graph in graph theory. In Com-
puter Science trees are usually labelled, ordered and rooted. Rooted trees
single out a node as being the root and any two connected nodes in the tree
have an inherent parent-child relationship. In an ordered tree, the children
of each node have a specific ordering.

Next we describe trees that are labelled and ranked. We denote the set of
non-negative integers by N. A ranked alphabet Σ is a finite alphabet that
is partitioned into disjoint subsets Σk, for k ∈ N. Thus Σ = ∪k∈NΣk and
Σi ∩ Σj = ∅ if i 6= j. The rank of a node is the number of children of the
given node. In labelled ranked trees each node of rank k is labelled by a
symbol in Σk. Most Extensible Markup Language (XML) documents can be
represented by unranked trees, except when links are used.

The tree in Figure A.1 has the signature {s : 2, " : 0, ! : 0}, and it describes

one measure in
4
4 time. This tree represents a quarternote followed by a

halfnote followed by a quarternote. Using the notation a[t1, . . . , tk] to denote
a tree with root node labelled by the symbol a of rank k, and with subtrees
t1, . . . , tk, and using simply a if k = 0, the tree in Figure A.1 is denoted by

s
[

s[ !, " ], !
]

. In essence one can interpret nodes labelled by s in Figure

37
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s

!s

"!

Figure A.1: A sample tree over the ranked alphabet {s: 2, " : 0, ! : 0 }

A.1 as a way to convert unranked trees, with notes at the leaves, to ranked
binary trees.

Definition A.1.1 (Set of trees over Σ, or TΣ) - (Drewes, 2006) Let Σ be a sig-
nature. The set TΣ of all trees over Σ is the smallest set of strings such that
t1, . . . , tn ∈ TΣ implies that f [t1, . . . , tn] ∈ TΣ, for every f ∈ Σ(n).

Note that all trees consisting of only a root node labelled by a symbol of rank
0 in Σ, is by definition in TΣ. The trees t1, . . . , tn are called direct subtrees of
f [t1, . . . , tn]. The generation of trees by grammars are discussed next.

A.2 Regular Tree Grammars

Context-free grammars, the formal equivalent of the Backus-Naur formal-
ism (Ford, 2004), are well-known to most Computer Scientists. The Backus-
Naur formalism is often used to describe the syntax of programming lan-
guages. A context-free grammar is a finite set of rules that generates a lan-
guage of strings. This formalism was proposed by Noam Chomsky (Chom-
sky, 1956). In a similar way, a regular tree grammar (RTG) is a finite set of
rules that generates a language of trees (Drewes, 2006).

Definition A.2.1 (Regular Tree Grammars (RTG’s)) - (Drewes, 2006) A reg-
ular tree grammar is a tuple G = (N,Σ,R,S) consisting of

- a finite alphabet N of nonterminals of rank 0;
- a finite output alphabet Σ, disjoint from N, whose elements are called

terminals;
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- a finite set R of rules of the form A → t, where A ∈ N and t ∈ TΣ∪N;
and

- an initial nonterminal S ∈ N.

Regular Tree Grammars generate trees by using the rules of the grammar in
a sequence of derivation steps.

Definition A.2.2 (Regular Tree Grammar Derivations) - (Comon et al., 2007)
Let G = (N, Σ, R, S) be a regular tree grammar. For trees s, s’ ∈ TΣ∪N, there
is a derivation step s⇒G s’ (or simply s⇒ s’), if:

- s is a tree which has at least one leaf node labelled by a nonterminal A.
- there is a rule A→ t ∈ R, and
- s’ is the same tree as s, except that one of the leaf nodes labelled by A is

replaced by the tree t.

A sequence t0 ⇒ t1 ⇒ · · · ⇒ tn of n derivation steps (n ∈ N) is denoted by
t0 ⇒n tn and derivations of any length by t0 ⇒∗ t. The regular tree language
generated by G, denoted by L(G), is the set of trees {t ∈ TΣ|S⇒∗G t}.

In Example A.2.1 we give an example of a derivation in an RTG.

Example A.2.1 (RTG derivations) - In this example we give an RTG which
generates the tree in Figure A.1.

N = { #̃, "̃•, "̃ }
Σ = { s : 2, # : 0, "• : 0, " : 0, ! : 0 }

R = { #̃→ # , #̃→ s
[
"̃, "̃

]
, #̃→ s

[
"̃•, !

]
, #̃→ s

[
!, "•

]
"̃• → "• , "̃• → s

[
!, "

]
, "̃→ " , "̃→ s

[
!, !

]
}

S = #̃

The RTG above can generate the tree in Figure A.1 as follows:

#̃⇒ s
[
"̃•, !

]
⇒ s

[
s
[
!, "
]

, !
]
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This is not the only tree that can be generated from this grammar. Here are
all the other possibilities:

# ; s
[
", "
]

; s
[
"•, !

]
; s
[
!, "•

]
; s
[

s
[
!, !
]

, "
]

; s
[

s
[
!, "
]

, !
]

; s
[
", s
[
!, !
]]

;

s
[

s
[
!, !
]

, s
[
!, !
]]

.

A.3 Top-Down Tree Transducers

Ranked trees, regular tree grammars and top-down tree transducers play an
essential role in the music generation system Willow (Högberg, 2005). Top-
down tree transducers are the tree analogues of string transducers. Thus a
top-down tree transducer takes a tree as input and produces a tree or noth-
ing as output. Tree transducers (TDs) have both input and output alphabets.

Definition A.3.1 (Tree transducer) - (Comon et al., 2007) A top-down tree
transducer (TD) is a tuple td = (Q, Σ, ∆, R, q0), where

- Q is a finite ranked alphabet of states, all of rank one;
- Σ and ∆ are finite ranked input and output alphabets, respectively;
- R is a finite set of rewrite rules of the form q[a[x1, . . . , xk]] → t, where

a ∈ Σ(k), q ∈ Q, and t ∈ T∆(Q(Xk));
- q0 ∈ Q, is the initial state.

We briefly explain the notation T∆(Q(Xk)) used in the definition above.
Firstly, Q(Xk) denotes the set of trees consisting of a state in Q as root
node and a variable in Xk as only child, where Xk is the set of variables
{x1, . . . , xk}. A tree t in T∆(Q(Xk)) is obtained by taking a tree s in T∆ and re-
placing (perhaps) some (or even all) of the leaf nodes of s by trees in Q(Xk).

Next we describe the mechanism with which a top-down tree transducer
td=(Q,Σ,∆,R,q0) computes output trees from input trees. Let s ∈ TΣ be an
input tree. The computation starts with the tree q0[s]. By q0[s] we mean
the tree with the state q0 as root and with the tree s as the only child of the
root node. Assume that s is given by a[t1, . . . , tk]. Next we take any rule
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in R of the form q0[a[x1, . . . , xk]] → t, where a is the label of the root node
of s, and k is the rank of a. If no such rule exists, the transducer does not
produce any output when given the input tree s. Note that in the special
case where k = 0, we have that t ∈ T∆. Since t ∈ T∆(Q(Xk)), the tree
contains possibly some of the variables x1, . . . , xk at the leaf nodes. A given
variable may also appear at more than one leaf node. When we apply the
rule q0[a[x1, . . . , xk]] → t to the tree q0s, we obtain the tree t[t1, . . . , tk]. We
denote by t[t1, . . . , tk] the tree that is obtained by replacing xi in t by tk. Note
that when we replace xi by ti in t, we obtain a tree with a state in Q above
each ti. At each node that is labelled by a state in t[t1, . . . , tk], we repeat the
rewriting process that was used at the root of q0s. We repeat this process
until we obtain a tree t in T∆. We denote the computation that takes s as
input and produces t as output by s⇒td t . Also, by td(s) we denote the set
{t ∈ T∆|q0s⇒td t}. In other words, td(s) is the set of all possible trees in T∆

that can be obtained if we start with q0s and apply the rules in R until we
obtain a tree in T∆.

In the next example we show how a given transducer transforms the tree in
Figure A.1 in such a way that it contains multiple phrases. The parents of
the leaf nodes of the trees obtained as output from the tree transducer are
also marked by pitch values.

Example A.3.1 - This example gives a non-deterministic total top-down tree
transducer which transforms the tree from Figure A.1 to have pitch and
multiple phrases. This transducer creates two copies of the input tree with
phrase as root. Next it places the pitches C, E or G on the yield of the tree,
always starting with C.
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Σ = { s : 2, # : 0, "• : 0, " : 0, ! : 0 }
∆ = { phrase : 2, s : 2, # : 0, "• : 0, " : 0, ! : 0, c : 1, e : 1, g : 1 }
Q = {START, C, E, G}

R =

{START[x1] → phrase[C[x1], G[x1]] ,
C[s[x1, x2]] → s[C[x1], E[x2]] ,
E[s[x1, x2]] → s[E[x1], G[x2]] ,
G[s[x1, x2]] → s[G[x1], G[x2]] ,
G[s[x1, x2]] → s[G[x1], C[x2]] ,

C[#]→ c[#] , C["]→ c["] , C["•]→ c["•] , C[!]→ c[!] ,

E[#]→ e[#] , E["]→ e["] , E["•]→ e["•] , E[!]→ e[!] ,

G[#]→ g[#] , G["]→ g["] , G["•]→ g["•] , G[!]→ g[!]}
q0 = START

A sample transformation of a tree with this top-down tree transducer is
shown below:

s
[

s
[
!, "
]

, !
]

⇒ START
[

s
[

s
[
!, "
]

, !
]]

⇒ phrase

[
C
[

s
[

s
[
!, "
]

, !
]]

, G
[

s
[

s
[
!, "
]

, !
]]]

⇒ phrase

[
s
[

C
[

s
[
!, "
]]

, E
[
!

]]
, s
[

G
[

s
[
!, "
]]

, C
[
!

]]]
⇒ phrase

[
s
[

s
[

C
[
!

]
, E
[
"

]]
, e
[
!

]]
, s
[

s
[

G
[
!

]
, G
[
"

]]
, c
[
!

]]]
⇒ phrase

[
s
[

s
[

c
[
!

]
, e
[
"

]]
, e
[
!

]]
, s
[

s
[

g
[
!

]
, g
[
"

]]
, c
[
!

]]]

A.4 Conclusion

This Appendix gave a short introduction to tree languages. A more detailed
introduction can be found in Drewes (2006). We discussed how trees can
be generated by regular tree grammars and transformed by top-down tree
transducers. Willow (Högberg, 2005) uses tree grammars and tree transduc-
ers to implement a rule-based system for algorithmic composition. XML
documents, which are used in our music generation system, can often be
considered as trees.
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